
wall E = {Izl = R0} [3] 

b7 +divz[ 3~ Vz Azh+ +~Vz(r,(h) =0. 

The dependence o,(h) = o((i - ~h)e0 + $h8=) is obtained here as a result of asymptotic inte- 
gration of the heat conduction equation for h/R 0 + 0. The linearization is carried out in 
the constant layer thickness h = R - R0. 

In conclusion we note that the critical thermocapillary numbers, making the operator 
Lk vanish, were obtained in [4]. The branching of stationary solutions of the complete equa- 
tions of thermocapillary convection was established in [5] near the critical Marangoni num- 
bers. These numbers were calculated in [6] for a nondeformed free boundary. 
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THEORETICAL AND EXPERIMENTAL STUDY OF CONVECTION IN A LIQUID LAYER 

WITH LOCAL HEATING 

V. A. Al'vares-Suares, Yu. S. Ryazantsev, 
and V. M. Shevtsova 

UDC 536.25 

The existence of shearing forces associated with surface tension at phase boundaries 
(liquid-liquid, liquid-~as) may have a significant effect on heat and mass transfer in a 
liquid. In the case where a temperature gradient is created in the volume of liquid being 
studied, surface thermocapillary forces - due to their low inertia - may lead to the devel- 
opment of fast-moving hydrodynamic flows [i, 2]. These effects become particularly impor- 
tant in space technology in connection with the study of the behavior of materials (melts) 
under low-gravity conditions, when the role of thermogravitational convection becomes negli- 
gibly small [3]. Possible applications here include crystal growth, welding, and the pro- 
duction of foamed materials in space. 

The phenomenon of thermocapillary convection (TCC) (Marangoni effect) makes some con- 
tribution to mass transfer in normal production processes as well. In the laser treatment 
of the surface of metals, TCC may play an important role in the alloying and nitriding of 
different grades of steel [4]. With allowance for the change in the form of the surface 
under the influence of TCC, possible uses of TCC include the production of diffraction 
gratings [5] and a new type of photographic process called thermoextensography [6]. This 
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TABLE i 

% 
Sub - 
stance C 

Alcohol ]22,3 
Kerosene 27 
Acetone 23,7 

g/(cm" 
c~ sec) 

c , cal/ P 
,/{ g �9 deg~ 

0,79 t,2.t0 -2 0,59 

0,82 11,49-t0-21 0,48 
0,79 l 0,32.10 .2 0,51 

~, call  
(cm-se c" 
deg) 

4,2. t0 -~ 
3,6.10-~ 
3,8.t0-~ 

deg -1 

it0.t0-5 
90.10-~ 

143.10-3 

Ma 

5,4.i0 ~ 
4,7.t05 
2,2-t06 

Gr 

7,0.108 
2,2.t08 

1,05-t0 s 

AT]Pr 

t0 I t6 
t0 28 
10 [4,t 

process is based on the action of the Marangoni effect during the exposure of different ma- 
terials to laser radiation. In biotechnology processes, TCC may also become the basis for 
the synthesis of new types of products [7]. In connection with these potential applications 
of TCC, it would be of considerable interest to augment the results in [i, 2] and perform a 
detailed comparison of experimental data and numerical results. 

Formidable problems are encountered in experimental attempts to determine the contribu- 
tion of interfacial forces to mass transfer in a liquid, since thermocapillary convection 
needs to be modeled in thin layers (H < 0.5 cm) with a sufficiently large free surface. The 
use of various types of visualization methods - such as the introduction of tracers, dyes, 
or particles - may together with the heat source seriously disturb the test conditions and 
result in sizable errors [8]. The method of photochromic visualization, involving impulsive 
heating of a medium by laser radiation with the,simultaneous appearance of a colored line, 
makes it possible to avoid these problems. 

Numerical modeling was also performed to more fully reveal the heat- and mass-transfer 
characteristics seen in the local heating of a liquid by pulsed laser radiation. All of the 
constants in the calculations were chosen so as to be as close as possible to the experimental 
data and, in contrast to [2], we considered heat removal from the surface. With agreement 
of the experimental and theoretical curves, it turned out to be possible to reliably deter- 
mine the temperature at the point of interaction of the radiation with the liquid surface. 

We conducted studies for three types of liquid - ethyl alcohol, kerosene, and acetone. 
Table i shows the main parameters of these liquids. Each liquid was in the form of a solu- 
tion with molecules of FKhV uniformly distributed over the volume. The laser radiation pro- 
duced a change in the orientation of the FKhV molecules with a simultaneous change in the 
optical properties (absorption spectrum). There was no change in concentration. Thus, the 
motion of the liquid was due to thermocapillary convection, and capillary-concentrative con- 
vection was absent. A change in the concentration of FKhV in the solution was accompanied 
by a change in the amount of energy absorbed. 

We are examining the convective motion of an incompressible fluid filling a circular 
cylindrical cuvette of radius R = 5 cm when a short pulse x = 10 -7 sec of ultraviolet radia- 
tion, acting as a source of heat in the liquid, is passed through the center of the cuvette. 
In the dimensionless variables used in [2], the system of Navier-Stokes and heat-conduction 
equations that describes the process has the form 

am oo} v do) (ott 
-o7 + u ~f + az +7-= 

7) 0o Pr V%)-- r176 +GrPr ~ r ;  

oO 00 aO 
0-7 +u~ +v~ =V~O; 

V2 ~ 2 o~ au ov 
r Or r(o, (o = o'-z - -  Or' 

t o4  t o4  ~ 0 ~ i o 
r Oz P . . . .  V 2= -~ ---{----- ' r ar t  - -  Oz 2 Or 2 r Or" 

(i) 

(2) 

(3) 

Conditions expressing the balance of the viscous and thermocapillary forces (Marangoni 
effect) and heat removal are assigned on the free surface of the liquid (z = h) 

O u ~ z  = Ma~O~r ,  O @ ~ z  = - -?O.  

The boundary conditions on the lateral walls (r = i) and the bottom (z = 0) of the cuvette 
correspond to adhesion of the liquid ~ = 0, 8~/8n = 0. The below symmetry conditions are 
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assigned on the symmetry axis 

~ ( r  = O, z,  t) = ~ ( r  = O, z,  t) = OO(r = O, z,  t)/Or = O, 

while the initial conditions are the conditions of stationariness of the liquid 

~(r,  z, t ~ O )  = ~(r,  z, t-----O) = 0 

and the assigned axisymmetric temperature distribution 

@(z, t - - O )  = e x p  ( a ( z - - h ) ) ,  O ~ r < ~ a ,  

@(z, t = O) = 0 ,  r > a .  

Problem (1)-(3) includes several dimensionless parameters: the Marangoni number Ma = 

~oB(TI--T0) , the Grashof number Gr = gSR3(TI - T0)/v 2, the Prandtl number Pr = ~/a, the 
aT pvn 

h e a t - r e m o v a l  c o e f f i c i e n t  ? = ~ ' R / u c p p ,  and  t h e  a b s o r p t i o n  c o e f f i c i e n t  a .  The  l a t t e r  i s  n o t  
known f r o m  t h e  e x p e r i m e n t a l  d a t a  and  i s  d e t e r m i n e d  a s  f o l l o w s .  The  s t o r e  o f  h e a t  i n  t h e  
s y s t e m  

Q = cvp y (Tf - -  T o ) d V  = (T1 - -  T o ) c p p ~ B a 2 ( l  - -  e -=H/R) /a  ' ( 4 )  

is equal to the energy of the laser pulse E = 0.05 d. Energy losses are not considered. 
The unknowns in Eq. (4) are the quantity a and the maximum temperature in the heated liquid 

T I �9 

At ~ + 0 and the depth H = 0.5 cm, the energy of the pulse is sufficient to uniformly 
heat a column of liquid of the radius a' = 0.055 cm to T I = 297 K (i.e., heating AT = T I - 
T o = 4 K, where T o is the temperature of the unheated liquid, equal to 293 K). By increasing 
TI, we can use (1.4) to obtain the value of a for performing the calculations. 

We used the experimental unit described in [i] and the method of calculation developed 
in [2]. 

Figure i shows the trajectory of a liquid particle of ethyl alcohol from the center to 
the surface of the layer (the empirically-observed change in the radius of the colored spot 
over time). The solid lines are experimental curves, while the dashed lines are theoretical 
curves. Curves i and 2 correspond to layer depths of 0.1 and 0.4 cm, a pulse energy E = 
0.05 J, an FKhV concentration C = 0.2 g/liter, Ma = 5.4"105 , and Gr = 5.8.10 ~ The value of 

was chosen as follows. According to [ii], the coefficient of heat removal at a gas-liquid 
boundary for a quiescent medium ~' = 1.4.10 -3 cal/(cm2.sec.deg). Insertion of this value 
into the numerical calculations did not produce a significant slowing of the external bound- 
ary of the colored spot, which in turn caused the theoretical curves to deviate appreciably 
from the experimental curves. In light of this, in the calculations we gradually increased 

to the value ~' = 7.0.10 -3 cal/(cm2.sec.deg). This corresponded to the increase in heat 
transfer from the surface with allowance for the motion of the liquid [12] and resulted in 
minimal differences between the curves. In comparing the results, we found that good agree- 
ment between the theory and experiment was obtained when the temperature gradient in the 
liquid AT = i0 K, i.e., when the maximum temperature seen on the surface of the liquid T I = 
303 K and ~ = 46. 

Figure 2 shows the dependence of the radius of the colored spot at the moment of time 
t = i sec on the height of the liquid column for kerosene. As could be seen from Fig. I, 
convective motion of the liquid dies out by this moment of time, while the radius of the 
colored spot is close to the limiting value. The solid curve shows experimental results, 
while the dashed curve shows theoretical results. Values of the parameters for kerosene are 
shown in the table. With an increase in the depth of the liquid layer, the bottom of the 
cuvette ceases to have an effect on the radius of motion near the surface. Beginning with 
0.4 cm, the radius of the colored spot was nearly independent of the thickness of the liquid 
layer and was determined only by interracial and gravitational forces. Figure 2 shows the 
good agreement between the experimental and theoretical results. Since the dependences of 
the radius of the spot on height H for alcohol at t = i sec were presented independently in 
[i] and [2], they are not presented here. However, their comparison showed that the differ- 
ence in the behavior of the theoretical and experimental curves is negligible. 
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Figure 3 shows the change in the radius of the colored spot with time for acetone and 
kerosene (curves 1 and 2). It should be noted that it was difficult to measure the radius 
r at t > 0.4 sec in the experiments with acetone due to its intensive vaporization. Severe 
curvature of the circumference of the colored spot was seen on the free surface, this curva- 
ture having led to large errors in the measurements. 

It could be seen from special experiments conducted with a concentration C = 0.2 g/liter 
that the absorption coefficient for all three liquids is determined by the quantity of FKhV 
molecules present per unit volume of the solvent, not by the properties of the test liquid 
itself. With a decrease in the concentration of FKhV, the absorption coefficient became de- 
pendent on the properties of the solvent. The experimental results are shown by the solid 
curves, while the theoretical results are shown by the dashed curves. It is apparent that 
the difference between theory and experiment is greatest in the case of acetone, it being 
larger due to the fact that evaporation from the liquid surface was not considered in the 

calculations. 

A change in the energy of the laser pulse acting on the medium led to a corresponding 
change in T z in the liquid. As a result, there was also a change in the radius of the col- 
ored spot. Since satisfactory agreement was obtained between the sets of results with E = 
0.05 J and a temperature drop AT = i0 K, it is interesting to examine the motion of the liquid 
at other temperatures (energies). The solid line in Fig. 4 shows the change in the radius 
of the spot r in relation to the energy of the pulse at the moment of time t = 1 sec (E was 
changed within the range from 0.025 to 0.08 J with a FKhV concentration C = 0.2 g/liter). 
In the theoretical model being used here, the change in pulse energy corresponds to a change 
in the heating of the liquid AT. Using the value for the absorption coefficient ~ = 46, cal- 
culations were performed for a temperature drop AT from 5 to 12 K. It follows from a com- 
parison of the data obtained for the slope tangents of the lines in the indicated range of 
the parameters E(AT) that the deviation is no greater than 25%. 

It would be incorrect to speak of an increase in the difference between theory and ex- 
periment with a change in E away from 0.05 J, since here we are comparing only the slope tan- 
gents of the curves and assuming that the relationship between E and T is linear. 

Thus, the above analysis of experimental results has shown that intensive heat and mass 
transfer is seen in liquid under the influence of thermocapillary forces, while the good 
agreement between the results confirms the correctness of the chosen theoretical model. 
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ii. 
12. 

EVOLUTIONARY EQUATION FOR PERTURBATIONS IN A TWO-LAYER FILM FLOW 

O. Yu. Tsvelodub UDC 532.51 

We will examine the simultaneous motion of two films of immiscible liquids flowing under 
the influence of gravity. Such flows are encountered in certain types of extraction columns. 
The chosen coordinate system is shown in Fig. i. The film bounded by the solid wall will 
henceforth be designated as the first film, while the film having the free boundary will be 
referred to as the second film. The quantities pertaining to these films will be denoted by 
the subscripts 1 and 2, respectively. 

The equations which describe the motion of such a system permit a solution to be ob- 
tained with plane phase and free boundaries, regardless of the rates of flow of the liquids. 
Here, the profiles of longitudinal velocity are equal to 

g [2 (Hlo  + H2op2/p1 ) y - -  y:],  Ulo  - -  

(1) 
U2o = ~--~ [2HloH2o(~2/~l -  t) + H~o (~z/v~ - -  ~) + 2 (H~o+H2o) y_y2]. 

Here, v i and ~i are the kinematic and absolute viscosities; ~i is density; Hi0 is the thick- 
ness of the liquid film. 

However, even with low flow rates, the flow (i) may become wavelike due to instability. 
Using as scales characteristic values of the quantities pertaining to the first film - es- 
pecially the thickness Hi0 and the mean-flow-rate velocity U 0 - for nonwavy flow with the 
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